MENU

研究業績リスト

発表論文など | 学会発表など | 学位論文

欧文雑誌

  • A non-cell-autonomous circadian rhythm of bioluminescence reporter activities in individual duckweed cells
    Watanabe E, Muranaka T, Nakamura S, Isoda M, Horikawa Y, Aiso T, Ito S, Oyama T
    Plant Physiol. 193(1):677–688 (2023) doi:10.1093/plphys/kiad218 PubMed

  • Multifunctional chemical inhibitors of the florigen activation complex discovered by structure-based high-throughput screening
    Taoka KI, Kawahara I, Shinya S, Harada KI, Yamashita E, Shimatani Z, Furuita K, Muranaka T, Oyama T, Terada R, Nakagawa A, Fujiwara T, Tsuji H, Kojima C
    Plant J. 112(6):1337–1349 (2023) doi:10.1111/tpj.16008 PubMed

  • Ethnobotanical history: duckweeds in different civilizations
    Edelman, M, Appenroth KJ, Sree KS, Oyama T
    Plants 11(16):2124 (2022) doi:10.3390/plants11162124 PubMed

  • Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Methylobacterium aquaticum Strain 22A
    Juma PO, Fujitani Y, Alessa O, Oyama T, Yurimoto H, Sakai Y, Tani A
    Front Microbiol. eCollection (2022) doi:10.3389/fmicb.2022.921635 PubMed

  • Bioluminescent monitoring of circadian rhythms in isolated mesophyll cells of Arabidopsis at single-cell level.
    Bioluminescennce: Methods and Protocols. 4th edition. Edited by Kim, S.-B. in Springer Protocols
    Nakamura S, Oyama T
    Methods Mol. Biol., Springer Nature, 2025:395–405 (2022) doi: 10.1007/978-1-0716-2473-9_31 PubMed

  • Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis
    Muranaka T, Ito S, Kudoh H, Oyama T
    iScience 25(7):104634 (2022) doi:10.1016/j.isci.2022.104634 (bioRxiv) doi: 10.1101/2022.03.09.483716 PubMed

  • Interspecific divergence of circadian properties in duckweed plants
    Isoda M, Ito S, Oyama T
    Plant Cell Environ. 45(6)1942-1953 (2022) doi: 10.1111/pce.14297 (bioRxiv) doi: 10.1101/2021.10.19.465055 PubMed

  • Adaptive diversification in the cellular circadian behavior of Arabidopsis leaf- and root-derived cells
    Nakamura S, Oyama T
    Plant Cell Physiol. , 63:421-432 (2022) doi: 10.1093/pcp/pcac008 (bioRxiv) doi:10.1101/2021.06.10.447857 PubMed

  • An endogenous basis for synchronization characteristics of the circadian rhythm in proliferating Lemna minor plants
    Ueno K, Ito S, Oyama T
    New Phytologist 233(5):2203-2215 (2022) doi:10.1111/nph.17925 (bioRxiv) doi: 10.1101/2021.02.09.430421 PubMed

  • Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis
    Sanagi M, Aoyama S, Kubo A, Lu Y, Sato Y, Ito S, Abe M, Mitsuda N, Ohme-Takagi M, Kiba T, Nakagami H, Rolland F, Yamaguchi J, Imaizumi T, Sato T
    PNAS, 118(19)::e2022942118 (2021) doi: 10.1073/pnas.2022942118 PubMed

  • A solvable model of entrainment ranges for the circadian rhythm under light/dark cycles
    Takakura R, Ichikawa M, Oyama T
    bioRxiv, (2019) doi: 10.1101/683615 PubMed

  • Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era
    Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E
    Plant Cell, 33:3207-3234 (2021) doi: 10.1093/plcell/koab189. PubMed

  • Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd
    Yoshida A, Taoka KI, Hosaka A, Tanaka K, Kobayashi H, Muranaka T, Toyooka K, Oyama T, Tsuji H
    Front Plant Sci., eCollection (2021) doi: 10.3389/fpls.2021.697206. PubMed

  • Detection of uncoupled circadian rhythms in individual cells of Lemna minor using a dual-color bioluminescence monitoring system
    Watanabe E, Isoda M, Muranaka T, Ito S, Oyama T
    Plant cell physiol., 62(5):815-826 (2021) doi: 10.1093/pcp/pcab037 PubMed

  • Student Spotlight: Minako Isoda
    Isoda M
    ISCDRA, 8(31): 103-104 (2020)

  • Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site
    Khairina Y, Jog R, Boonmak C, Toyama T, Oyama T, Morikawa M
    Chemosphere, 268:129247 (2020) doi: 10.1016/j.chemosphere.2020.129247 PubMed

  • The application of single cell bioluminescent imaging to monitor circadian rhythms of individual plant cells. In – Bioluminescent Imaging
    Muranaka T, Oyama T
    Methods Mol. Biol., Springer Nature, 2081:231-242 (2020) doi: 10.1007/978-1-4939-9940-8_17 PubMed

  • Monitoring single-cell bioluminescence of Arabidopsis leaves to quantitatively evaluate the efficiency of a transiently introduced CRISPR/Cas9 system targeting the circadian clock gene ELF3
    Kanesaka Y, Okada M, Ito S, Oyama T
    Plant Biotech., 36(3):187-193 (2019) doi:10.5511/plantbiotechnology.19.0531a

  • Community composition and methane oxidation activity of methanotrophs associated with duckweeds in a fresh water lake
    Iguchi H, Umeda R, Taga H, Oyama T, Yurimoto H, Sakai Y
    J Biosci Bioeng., 128(4):450-455 (2019) doi: 10.1016/j.jbiosc.2019.04.009 PubMed

  • Use of a duckweed species, Wolffiella hyalina, for whole-plant observation of physiological behavior at the single-cell level
    Isoda M, Oyama T
    Plant Biotech., 35(4):387-391 (2018) doi:10.5511/plantbiotechnology.18.0721a

  • Long-term monitoring of bioluminescence circadian rhythms of cells in a transgenic Arabidopsis mesophyll protoplast culture
    Nakamura S, Oyama T
    Plant Biotech., 35(3):291-295 (2018) doi:10.5511/plantbiotechnology.18.0515a

  • Self-organizing researcher networks in the plant sciences
    Dodd A, Harper H, Hiscock JS, Koch MA, Kudoh H, Oyama T, Schumacher K, Shimada S, Tamura MN
    Plants People Planet, (2019) doi: 10.1002/ppp3.2

  • KaiC family proteins integratively control temperature-dependent UV resistance in Methylobacterium extorquens AM1
    Iguchi H, Yoshida Y, Fujisawa K, Taga H, Yurimoto H, Oyama T and Sakai Y
    Environ Microbiol Rep. (6) (2018) doi: 10.1111/1758-2229.12662 PubMed

  • Monitoring circadian rhythms of individual cells in plants
    Muranaka T and Oyama T
    J Plant Res. 131(1):15-21 (2018) doi: 10.1007/s10265-017-1001-x PubMed

  • Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles
    Okada M, Muranaka T, Ito S, Oyama T
    Sci Rep. 7(1):317 (2017) doi: 10.1038/s41598-017-00454-8 PubMed

  • Early evolution of the land plant circadian clock
    Linde A, Eklund M, Kubota A, Pederson E, Holm K, Gyllenstrand N, Nishihama R, Cronberg N, Muranaka T, Oyama T, Kohchi T, Lagercrantz U
    New Phytol. 216(10): 576-590 doi: 10.1111/nph.14487 PubMed

  • Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles
    Muranaka T, Oyama T
    Sci Adv. 2(7): e1600500 (2016) doi: 10.1126/sciadv.1600500 PubMed
    d01

  • Overexpression of a CO homologue disrupts the rhythmic expression of clock gene LgLHYH1 in Lemna gibba
    Ito-Miwa K, Serikawa M, Kondo T, Oyama T
    Plant Biotech. 31, 319-328 (2014) CiNii

  • Effects of adenylates on the circadian interaction of KaiB with the KaiC complex in the reconstituted cyanobacterial Kai protein oscillator.
    Goda K, Kondo T, Oyama T
    Biosci Biotechnol Biochem. 78(11):1833-8 (2014) PubMed

  • Characterization of circadian rhythms of various duckweeds.
    Muranaka T, Okada M, Yomo J, Kubota S, Oyama T
    Plant Biol. 17 (s1), 66-74 (2015) PubMed Journal

  • A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body.
    Muranaka T, Kubota S, Oyama T
    Plant Cell Physiol. 54 (12): 2085-2093 (2013) PubMed

  • d01 Editor-in-Chief's choice & Cover
  • Theophylline-dependent Riboswitch as a Novel Genetic Tool for Strict Regulation of Protein Expression in Cyanobacterium Synechococcus elongatus PCC 7942.
    Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y
    Plant Cell Physiol. 54(10): 1724-1735 (2013) PubMed

  • Self-arrangement of cellular circadian rhythms through phase-resetting in plant roots.
    Fukuda H, Ukai K, Oyama T
    Physical review E 86(4 Pt 1):041917 (2012) PubMed

  • Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942
    Taniguchi Y, Nishikawa T, Kondo T, Oyama T
    FEBS Letters 586: 753-759 (2012) PubMed

  • Fluorescence correlation spectroscopy to monitor Kai protein-based circadian oscillations in real time
    Goda K, Ito H, Kondo T, Oyama T
    J. Biol. Chem. 287:3241-3248 (2012) PubMed

  • Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria
    Taniguchi Y, Takai N, Katayama K, *Kondo T, *Oyama T (*共同責任著者)
    Proc Natl Acad Sci U S A 107:3263-3268(2010) PubMed

  • Functional conservation of clock-related genes in flowering plants: overexpression and RNAi analyese of the circadian rhythm in the monocotyledon Lemna gibba
    Serikawa M, Miwa K, Kondo T, Oyama T
    Plant Physiol 146:1952-1963(2008) PubMed

  • Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria
    Murayama Y, Oyama T, Kondo T
    J Bacteriol 190: 1691-1698 (2008) PubMed

  • Autonomous synchronization of the circadian KaiC phosphorylation rhythm
    Ito H, Kageyama H, Mutsuda M, Nakajima M, *Oyama T, *Kondo T (*共同責任著者)
    Nat Struct Mol Biol 14: 1084-1088 (2007) PubMed

  • ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria
    Terauchi K, Kitayama K, Nishiwaki T, Miwa K, Murayama Y, Oyama T, Kondo T
    Proc Natl Acad Sci U S A. 104:16377-16388 (2007) PubMed

  • labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC
    Taniguchi Y, Katayama K, Ito R, Takai N, *Kondo T, *Oyama T
    Genes & Development 21:60-70 (2007) PubMed

  • Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses
    Miwa K, Serikawa M, Suzuki S, Kondo T, Oyama T
    Plant Cell Physiol. 47, 601  612 (2006) PubMed

  • Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro
    Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T, Kondo T
    Mol. Cell 23, 161  171 (2006)

  • A KaiC-associating SasA RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria
    Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H
    Proc Natl Acad Sci U S A. 103, 12109 -12114 (2006)

  • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T
    Science 308, 414-415 (2005) 

  • Tetrameric architecture of the circadian clock protein KaiB: A novel interface for intermolecular interactions and its impact on the circadian rhythm.
    Hitomi K, *Oyama T, Han S, Arvai AS, *Getzoff ED (*共同責任著者)
    J. Biol. Chem. 280, 19127  19135 (2005)

  • An in vivo dual-reporter system of cyanobacteria using two railroad-worm luciferases with different color emissions
    Kitayama Y, Kondo T, Nakahira Y, Nishimura H, Ohmiya Y, *Oyama T
    Plant Cell Physiol. 45: 109-113 (2004)

  • Global gene repression by KaiC as a master process of prokaryotic circadian system.
    Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H, Oyama T, Kondo T
    Proc Natl Acad Sci U S A. 101, 881-885 (2004)

  • Characterization of plant circadian rhythms by employing Arabidopsis cultured cells with bioluminescence reporters
    Nakamichi N, Ito S, Oyama T, Yamashino T,  Kondo T, Mizuno T
    Plant Cell Physiol. 45: 57-67 (2004)

  • Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis
    Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA
    Plant Cell 15:223-36 (2003)

  • The IRE gene encodes a protein kinase homolog and modulates root-hair growth in Arabidopsis
    Oyama T, Shimura Y, Okada K
    Plant J. 30:  289-299 (2002)

  • Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
    Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (上位3人は共同筆頭著者、アルファベット順)
    Science 293: 880-293 (2001)

  • Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog
    Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA
    Science 289:  768-771 (2000)

  • HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain
    Hardtke HC, Gohda K, Osterlund MT, Oyama T, Okada K, Deng X-W
    EMBO J 19:  4997-5006 (2000)

  • Regulatory systems of root patterning
    Okada K, Wada T, Oyama T, Ota M, Tachibana T, Gohda K, Ishiguro S
    J. Plant Res. 111:  315-322 (1998)

  • Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development
    Ang L-H, Chattopadhyay S, Wei N, Oyama T、Okada K、Batschauer B, Deng X-W
    Mol. Cell 1: 213-222 (1998)

  • The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl.
    Oyama T, Shimura Y, Okada K
    Genes & Development 11: 2983-2995 (1997)

欧文総説

  • Photoperiodic control of flowering: Lemna plants. In “Photoperiodism: The biological calendar”. Edited by Nelson RJ, Denlinger DL, Somers DE. Oxford University Press, New York, pp74-87(2010) Ito-Miwa K, Oyama T

  • The Kai Oscillator In “Bacterial circadian clock and rhythms book”. Edited by Johnson CH, Mackey SR, Ditty JL. Springer Publishing New York, pp87-101 (2009) Oyama T, Kondo T


日本語総説等

  • 大自然の中に心揺さぶる数理を見つける 小山時隆、市川正敏、松本剛 京都大学大学院理学研究科MACS教育プログラム実行委員会編 『京大式サイエンスの創り方』(京都大学学術出版会), Vol. 27, No. 2 35-67 2022年

  • 30年後の時間生物学を想う 小山時隆 時間生物学(社団法人日本時間生物学会), Vol. 27, No. 2 74-75 2021年

  • 植物の個体内単一細胞発光モニタリング
    『発光イメージング実験ガイド 機能イメージングから細胞・組織・個体まで蛍光で観えないものを観る!』 村中智明、小山時隆 実験医学別冊、永井健治、小澤岳昌編集 (羊土社)、145-158 2019年

  • 細胞レベルの概日リズム測定からわかる植物の時間秩序 小山時隆 時間生物学 (社団法人日本時間生物学会)Vol. 24, No.1 16-22 2018年

  • シアノバクテリアの概日時計の出力系 谷口靖人、小山時隆 生化学(社団法人日本生化学会)第81巻11号987-992  2009年

  • ウキクサの例にみる植物の光周性反応  伊藤(三輪)久美子、小山時隆 『光周性の分子生物学』 海老原史樹文、井澤毅編集 (シュプリンガー・ジャパン)1-14 2009年

  • シアノバクテリアの概日時計 小山時隆 産総研ブックス 『きちんとわかる時計遺伝子』内第10章、石田直理雄編集 (白日社)223-250 2008年

  • 光合成生物の概日時計の分子進化 小山時隆 植物細胞工学シリーズ23、植物の進化   細胞工学別冊、植物細胞工学(秀潤社)174-182  2007年(主要)

  • ルシフェラーゼ小山時隆、近藤孝男 植物細胞工学シリーズ21、モデル植物の実験プロトコール   細胞工学別冊、植物細胞工学(秀潤社)172-175  2005年

  • 高等植物 小山時隆   時計遺伝子の生物学(岡村均、深田吉孝編)(シュプリンガーフェアラーク東京) 15-27、2004年4月刊行

  • 光合成生物の時計遺伝子機能 小山時隆、近藤孝男& 特集、生体時計と概日リズム 神経研究の進歩 (医学書院)第45巻、第5号、715-723、2001年10月刊行

  • 概日時計と光信号伝達 小山時隆、片山光徳、近藤孝男 植物細胞工学シリーズ16,植物の光センシング 細胞工学別冊、植物細胞工学(秀潤社)134-141、2001年

  • 学会見聞録:第13階国際生物学賞記念シンポジウム、植物生物学の最前線 小山時隆、沢進一郎、清水健太郎  蛋白質 核酸 酵素 (共立出版) 第43巻、816-818、 1998年

  • 植物細胞の分化制御 小山時隆、澤進一郎、岡田清孝 シリーズ分子生物学5 植物分子生物学(山田康之編)(朝倉書店)30-49 1997年


特許出願

(全4点)

出願済(未公開)
特許出願2007-176279『生体分子の自律的振動反応の検出方法』
出願日 平成19年7月4日
発明者 合田和史(オリンパス株式会社)、小山時隆、近藤孝男(名古屋大学)

公開中
特許出願2005-300920
特許公開 2007-104998『タンパク質を含む時間計測用組成物およびその利用』
出願日 平成17年10月14日
公開日 平成19年4月26日
発明者 近藤孝男、小山時隆、岩崎秀雄、中嶋正人、大川妙子(名古屋大学)

再公表特許(A1)
【国際公開番号】WO2005/021791
【国際公開日】 平成17年3月10日(2005.3.10)
【発行日】 平成19年11月1日(2007.11.1)
【発明の名称】 生細胞を用いた外部刺激の影響評価方法およびその方法を行うためのキット、並びに外部刺激に対する影響評価システム
発明者 近藤孝男、小山時隆、北山陽子、(以上、名古屋大学)近江谷克裕(産業総合技術研究所)

公開中
特許出願1999-832402
特許公開 2000-270873『シロイヌナズナの根毛の伸長を制御するIRE遺伝子』
出願日 平成11年3月25日
公開日 平成12年10月3日
発明者 小山時隆(株、生物分子工学研究所)、岡田清孝(京都大学)